Copied to
clipboard

G = C42.168D6order 192 = 26·3

168th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.168D6, C6.792+ 1+4, C41D49S3, D63D438C2, (D4×Dic3)⋊36C2, (C2×D4).179D6, C422S324C2, (C2×C6).263C24, C12.6Q823C2, C23.14D638C2, C12.134(C4○D4), C4.40(D42S3), C2.83(D46D6), (C2×C12).637C23, (C4×C12).205C22, D6⋊C4.150C22, (C6×D4).215C22, C23.79(C22×S3), (C22×C6).77C23, C23.23D627C2, Dic3⋊C4.87C22, C4⋊Dic3.249C22, C22.284(S3×C23), (C22×S3).117C23, C37(C22.34C24), (C2×Dic3).137C23, (C4×Dic3).156C22, C6.D4.74C22, (C22×Dic3).159C22, C6.98(C2×C4○D4), (C3×C41D4)⋊10C2, C2.62(C2×D42S3), (S3×C2×C4).140C22, (C2×C4).215(C22×S3), (C2×C3⋊D4).79C22, SmallGroup(192,1278)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.168D6
C1C3C6C2×C6C22×S3S3×C2×C4C422S3 — C42.168D6
C3C2×C6 — C42.168D6
C1C22C41D4

Generators and relations for C42.168D6
 G = < a,b,c,d | a4=b4=c6=1, d2=b2, ab=ba, cac-1=dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=b2c-1 >

Subgroups: 624 in 240 conjugacy classes, 95 normal (19 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C4×S3, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C42⋊C2, C4×D4, C4⋊D4, C22.D4, C42.C2, C41D4, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C4×C12, S3×C2×C4, C22×Dic3, C2×C3⋊D4, C6×D4, C22.34C24, C12.6Q8, C422S3, D4×Dic3, C23.23D6, D63D4, C23.14D6, C3×C41D4, C42.168D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2+ 1+4, D42S3, S3×C23, C22.34C24, C2×D42S3, D46D6, C42.168D6

Smallest permutation representation of C42.168D6
On 96 points
Generators in S96
(1 64 19 67)(2 68 20 65)(3 66 21 69)(4 70 22 61)(5 62 23 71)(6 72 24 63)(7 59 35 80)(8 81 36 60)(9 55 31 82)(10 83 32 56)(11 57 33 84)(12 79 34 58)(13 40 86 54)(14 49 87 41)(15 42 88 50)(16 51 89 37)(17 38 90 52)(18 53 85 39)(25 94 46 74)(26 75 47 95)(27 96 48 76)(28 77 43 91)(29 92 44 78)(30 73 45 93)
(1 28 7 42)(2 37 8 29)(3 30 9 38)(4 39 10 25)(5 26 11 40)(6 41 12 27)(13 71 95 84)(14 79 96 72)(15 67 91 80)(16 81 92 68)(17 69 93 82)(18 83 94 70)(19 43 35 50)(20 51 36 44)(21 45 31 52)(22 53 32 46)(23 47 33 54)(24 49 34 48)(55 90 66 73)(56 74 61 85)(57 86 62 75)(58 76 63 87)(59 88 64 77)(60 78 65 89)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 89 95 78)(14 77 96 88)(15 87 91 76)(16 75 92 86)(17 85 93 74)(18 73 94 90)(19 24 35 34)(20 33 36 23)(21 22 31 32)(25 52 39 45)(26 44 40 51)(27 50 41 43)(28 48 42 49)(29 54 37 47)(30 46 38 53)(55 56 66 61)(57 60 62 65)(58 64 63 59)(67 72 80 79)(68 84 81 71)(69 70 82 83)

G:=sub<Sym(96)| (1,64,19,67)(2,68,20,65)(3,66,21,69)(4,70,22,61)(5,62,23,71)(6,72,24,63)(7,59,35,80)(8,81,36,60)(9,55,31,82)(10,83,32,56)(11,57,33,84)(12,79,34,58)(13,40,86,54)(14,49,87,41)(15,42,88,50)(16,51,89,37)(17,38,90,52)(18,53,85,39)(25,94,46,74)(26,75,47,95)(27,96,48,76)(28,77,43,91)(29,92,44,78)(30,73,45,93), (1,28,7,42)(2,37,8,29)(3,30,9,38)(4,39,10,25)(5,26,11,40)(6,41,12,27)(13,71,95,84)(14,79,96,72)(15,67,91,80)(16,81,92,68)(17,69,93,82)(18,83,94,70)(19,43,35,50)(20,51,36,44)(21,45,31,52)(22,53,32,46)(23,47,33,54)(24,49,34,48)(55,90,66,73)(56,74,61,85)(57,86,62,75)(58,76,63,87)(59,88,64,77)(60,78,65,89), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,89,95,78)(14,77,96,88)(15,87,91,76)(16,75,92,86)(17,85,93,74)(18,73,94,90)(19,24,35,34)(20,33,36,23)(21,22,31,32)(25,52,39,45)(26,44,40,51)(27,50,41,43)(28,48,42,49)(29,54,37,47)(30,46,38,53)(55,56,66,61)(57,60,62,65)(58,64,63,59)(67,72,80,79)(68,84,81,71)(69,70,82,83)>;

G:=Group( (1,64,19,67)(2,68,20,65)(3,66,21,69)(4,70,22,61)(5,62,23,71)(6,72,24,63)(7,59,35,80)(8,81,36,60)(9,55,31,82)(10,83,32,56)(11,57,33,84)(12,79,34,58)(13,40,86,54)(14,49,87,41)(15,42,88,50)(16,51,89,37)(17,38,90,52)(18,53,85,39)(25,94,46,74)(26,75,47,95)(27,96,48,76)(28,77,43,91)(29,92,44,78)(30,73,45,93), (1,28,7,42)(2,37,8,29)(3,30,9,38)(4,39,10,25)(5,26,11,40)(6,41,12,27)(13,71,95,84)(14,79,96,72)(15,67,91,80)(16,81,92,68)(17,69,93,82)(18,83,94,70)(19,43,35,50)(20,51,36,44)(21,45,31,52)(22,53,32,46)(23,47,33,54)(24,49,34,48)(55,90,66,73)(56,74,61,85)(57,86,62,75)(58,76,63,87)(59,88,64,77)(60,78,65,89), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,89,95,78)(14,77,96,88)(15,87,91,76)(16,75,92,86)(17,85,93,74)(18,73,94,90)(19,24,35,34)(20,33,36,23)(21,22,31,32)(25,52,39,45)(26,44,40,51)(27,50,41,43)(28,48,42,49)(29,54,37,47)(30,46,38,53)(55,56,66,61)(57,60,62,65)(58,64,63,59)(67,72,80,79)(68,84,81,71)(69,70,82,83) );

G=PermutationGroup([[(1,64,19,67),(2,68,20,65),(3,66,21,69),(4,70,22,61),(5,62,23,71),(6,72,24,63),(7,59,35,80),(8,81,36,60),(9,55,31,82),(10,83,32,56),(11,57,33,84),(12,79,34,58),(13,40,86,54),(14,49,87,41),(15,42,88,50),(16,51,89,37),(17,38,90,52),(18,53,85,39),(25,94,46,74),(26,75,47,95),(27,96,48,76),(28,77,43,91),(29,92,44,78),(30,73,45,93)], [(1,28,7,42),(2,37,8,29),(3,30,9,38),(4,39,10,25),(5,26,11,40),(6,41,12,27),(13,71,95,84),(14,79,96,72),(15,67,91,80),(16,81,92,68),(17,69,93,82),(18,83,94,70),(19,43,35,50),(20,51,36,44),(21,45,31,52),(22,53,32,46),(23,47,33,54),(24,49,34,48),(55,90,66,73),(56,74,61,85),(57,86,62,75),(58,76,63,87),(59,88,64,77),(60,78,65,89)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,89,95,78),(14,77,96,88),(15,87,91,76),(16,75,92,86),(17,85,93,74),(18,73,94,90),(19,24,35,34),(20,33,36,23),(21,22,31,32),(25,52,39,45),(26,44,40,51),(27,50,41,43),(28,48,42,49),(29,54,37,47),(30,46,38,53),(55,56,66,61),(57,60,62,65),(58,64,63,59),(67,72,80,79),(68,84,81,71),(69,70,82,83)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G2H 3 4A4B4C4D4E4F4G4H4I···4M6A6B6C6D6E6F6G12A···12F
order1222222223444444444···4666666612···12
size111144441222244666612···1222288884···4

36 irreducible representations

dim111111112222444
type++++++++++++-
imageC1C2C2C2C2C2C2C2S3D6D6C4○D42+ 1+4D42S3D46D6
kernelC42.168D6C12.6Q8C422S3D4×Dic3C23.23D6D63D4C23.14D6C3×C41D4C41D4C42C2×D4C12C6C4C2
# reps111242411164224

Matrix representation of C42.168D6 in GL8(𝔽13)

120000000
012000000
00100000
00010000
000012002
000000121
000012101
000012001
,
50000000
58000000
001200000
000120000
000010110
000000121
000010120
0000112120
,
122000000
01000000
00010000
001210000
000011100
000001200
0000112012
0000112120
,
111000000
112000000
001210000
00010000
000012200
000012100
000001012
000012110

G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,2,1,1,1],[5,5,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,12,0,0,0,0,11,12,12,12,0,0,0,0,0,1,0,0],[12,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,11,12,12,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0],[1,1,0,0,0,0,0,0,11,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,12,12,0,12,0,0,0,0,2,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0] >;

C42.168D6 in GAP, Magma, Sage, TeX

C_4^2._{168}D_6
% in TeX

G:=Group("C4^2.168D6");
// GroupNames label

G:=SmallGroup(192,1278);
// by ID

G=gap.SmallGroup(192,1278);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,758,100,675,570,185,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
×
𝔽